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Abstract

We present a two-step method to speed-up object detec-
tion systems in computer vision that use Support Vector Ma-
chines (SVMs) as classifiers. In a first step we perform fea-
ture reduction by choosing relevant image features accord-
ing to a measure derived from statistical learning theory. In
a second step we build a hierarchy of classifiers. On the
bottom level, a simple and fast classifier analyzes the whole
image and rejects large parts of the background. On the
top level, a slower but more accurate classifier performs
the final detection. Experiments with a face detection sys-
tem show that combining feature reduction with hierarchi-
cal classification leads to a speed-up by a factor of 170 with
similar classification performance.

1 Introduction

Most object detection tasks in computer vision are com-
putationally expensive because of a) the large amount of
input data that has to be processed and b) the use of com-
plex classifiers that are robust against pose and illumination
changes. Speeding-up the classification is therefore of ma-
jor concern when developing systems for real-world appli-
cations. In the following we investigate two methods for
speed-ups: feature reduction and hierarchical classification.

In [3] we presented a system for detecting frontal and
near-frontal views of faces in still gray images. The sys-
tem achieved high detection accuracy by classifying 19�19
gray patterns using a non-linear SVM. However, searching
an image for faces at different scales took several minutes
on a PC—far too long for most real-world applications. One
way to speed-up is to reduce the number of features.

There are basically two types of feature selection meth-
ods in the literature: filter and wrapper methods [1]. Filter
methods are preprocessing steps performed independently
of the classification algorithm or its error criteria; PCA is

an example of a filter method. Wrapper methods attempt
to search through the space of feature subsets using the
criterion of the classification algorithm to select the opti-
mal feature subset. Wrapper methods can provide more
accurate solutions than filter methods [5], but in general
are more computationally expensive. We present a new
wrapper method to reduce the dimensions of both input
and feature space of an SVM. An alternative approach for
speeding-up SVM classification has been proposed in [7]
by reducing the number of support vectors.

Feature reduction is a generic tool that can be applied to
any classification problem. When dealing with a specific
classification task we can use prior knowledge about the
type of data to speed-up classification. Two assumptions
hold for most vision-based object detection tasks: a) The
vast majority of the analyzed patterns in an image belongs
to the background class and b) most of the background pat-
terns can be easily distinguished from the objects. Based on
these two assumptions it is sensible to apply a hierarchy of
classifiers. Fast classifiers remove large parts of the back-
ground on the bottom and middle levels of the hierarchy and
a more accurate but slower classifier performs the final de-
tection on the top level. This idea falls into the framework of
coarse-to-fine template matching [8, 2] and is also related to
biologically motivated work on attention-based vision [4].

More recently a cascade of linear classifiers that have
been trained using AdaBoost has been proposed in [12] for
frontal face detection. This idea is related to ours in the
sense that it combines hierarchical classification with fea-
ture selection. However, in our approach the complexity of
the classifiers in the hierarchy is not only controlled by the
number of features (image resolution) but also by the class
of decision functions (i.e. class of SVM kernel functions).
The bottom level of our hierarchy consists of a linear clas-
sifier that operates on low resolution patterns (9�9) while
the top level consists of a non-linear classifier operating on
higher resolution patterns (19�19).
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In Section 2 we give a brief overview on SVM theory
and describe the training and test data used in our experi-
ments. In Section 3 we rank and select features in the input
space. Feature selection in the feature space of the classifier
is described in Section 4. In Section 5 we present the hier-
archical structure of classifiers. The paper is concluded in
Section 6.

2 Background

2.1 Support Vector Machine Theory

An SVM [11] performs pattern recognition for a two-
class problem by determining the separating hyperplane that
has maximum distance to the closest points of the training
set. These closest points are called support vectors. To
perform a non-linear separation in the input space a non-
linear transformation ���� maps the data points � of the in-
put space ��� into a high dimensional space, called feature
space ��� �� � ��. The mapping ���� is represented in the
SVM classifier by a kernel function���� ��which defines an
inner product in ���. Given � examples ����� ��������, the
decision function of the SVM is linear in the feature space
and can be written as:

���� � � ����� � 	 �
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The optimal hyperplane is the one with the maximal dis-
tance (in space ���) to the closest points ����� of the train-
ing data. Determining that hyperplane leads to maximizing
the following functional with respect to 
:
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under constraints
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� ���� �. An upper bound on the expected error probability
����� of an SVM classifier is given by [11]:
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where� � �
	 �
�� is the distance between the support vec-

tors and the separating hyperplane and� is the radius of the
smallest sphere including all points ������ ��������� of the
training data in the feature space. In the following, we will
use this bound on the expected error probability to rank and
select features.

2.2 Computational Issues

The only non-linear kernel investigated in this paper is a
second-degree polynomial kernel ������ � �
 � � � ���

which has been successfully applied to various object de-
tection tasks [6, 3]. Eq. (1) shows two ways of computing
the decision function. When using the kernel representation
on the right side of Eq. (1) the number of multiplications re-
quired to calculate the decision function for a second-degree
polynomial kernel is:

������� � ��� �� � �� (4)

where � is the dimension of the input space and � is the
number of support vectors. This number is independent
of the dimensionality of the feature space. It depends on
the number of support vectors which is linear with the
size � of the training data [11]. On the other hand, the
computation of the decision function in the feature space
is independent of the size of training samples, it only
depends on the dimensionality � of the feature space. For
the second-degree polynomial kernel the feature space
��� has dimension � � ������

� and is given by �
� �
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Thus the number of multiplications required for projecting
the input vector into the feature space and for computing
the decision function is:
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�
� ��� �� � � (5)

From Eq. (4) and (5) we see that the computation for an
SVM with second-degree polynomial is more efficiently
done in the feature space if the number of support vectors is
bigger than �. This was always the case in our experiments;
the number of support vectors was between � and � times
larger than �. That is why we investigated not only methods
for reducing the number of input features but also methods
for feature reduction in the feature space.

2.3 Training and test sets

In our experiments we used one training and two test
sets. The positive training set contained 2,429 19�19 faces.
The negative training set contained 4,548 randomly selected
non-face patterns. The relatively small size of the training
set affects the classification performance. Experiments in
[3] show that for a given classifier the false positive rate can
be reduced by a factor of 10 by increasing the training set
using bootstrapping methods. In this paper the main goal
was to speed-up a given classifier without loss of classifica-
tion performance. We opted for a small training set in order
to save time during training classifiers in our numerous ex-
periments.

The test set was extracted from the CMU test set 11. We
extracted 472 faces and 23,570 non-face patterns. The non-
face patterns were selected by a linear SVM classifier as the

1The test set is a subset of the CMU test set 1 [9] which consists of 130
images and 507 faces. We excluded 12 images containing line-drawn faces
and non-frontal faces.



non-face patterns most similar to faces. The final evaluation
of our system was performed on the entire CMU test set 1,
containing 118 images. Processing all images at different
scales resulted in about 57,000,000 analyzed 19�19 win-
dows.

3 Dimension reduction in the Input Space

3.1 Ranking Features in the Input Space

In [13] a gradient descent method is proposed to rank the
input features by minimizing the bound of the expectation
of the leave-one-out error of the classifier. The basic idea is
to re-scale the �-dimensional input space by a n�n diagonal
matrix � such that ��

�� is minimized. The new mapping
function is then ����� � ��� � �� and the kernel function
is ������� � ��� � �� � � �� � ������ � ������. The
decision function given in Eq. (1) becomes:
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The maximization problem of Eq. (2) is now given by:
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subject to constraints
��

��� 
��� � 	 and  � 
� �
	� � � 
� ���� �. We solve for 
 and � using an iterative pro-
cedure: We initialize � as a vector of ones and then solve
Eq. (7) and for the margin and radius. Using the values for

and � from the above equations and the bound in Eq. (3) we
compute � by minimizing � ��
� ������� �� using a gra-
dient descent procedure. We then start a new iteration of the
algorithm using the �� of the current iteration as initializa-
tion. We applied the ranking method to 283 gray features
generated by preprocessing 19�19 image patterns as de-
scribed in [10]. Additionally we performed tests with PCA
gray features that we obtained by projecting the data points
into the 283 dimensional eigenvector space. PCA was com-
puted on a the combined set of positive and negative sets.
We computed one iteration of the algorithm in all of our ex-
periments. The tests were performed on the small test set
for �	, 	 and 
		 ranked features. The ROC curves for
second-degree polynomial SVMs are shown in Fig. 1. For

		 features there is no difference between gray and PCA
gray features. For 	 and �	 features, however, the PCA
gray features gave clearly better results. For this reason we
focused in the remainder of the paper on PCA features only.
An interesting observation is that the ranking of the PCA
features obtained by the above described gradient descent
method was similar to the ranking by decreasing eigenval-
ues.

Figure 1. ROC curves for gray (top) and PCA
gray (bottom) features with the 60, 80 and 100
best ranked features.

3.2 Selecting Features in the Input Space

In Section 3.1 we ranked the features according to their
scaling factors ��. Now the problem is to determine a subset
of the ranked features ���� ��� ���� ���. This problem can be
formulated as finding the optimal subset of ranked features
���� ��� ���� ���� among the � possible subsets, where ��

is the number of selected features. As a measure of the
classification performance of an SVM for a given subset of
ranked features we used again the bound on the expected
error probability.
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To simplify the computation of our algorithm and to avoid
solving a quadratic optimization problem in order to com-
pute the radius �, we approximated2 �� by �� where � is

2We previously normalized all the data in ��� to be in a range between
0 and 1. As a result the points lay within a �-dimensional cube of length�
� in ��� and the smallest sphere including all the data points is upper



Figure 2. Approximation of estimated bound
on the expected error versus number of prin-
cipal components. The values on the �-axis
are not normalized by the number of training
samples.

the dimension of the feature space ���. For a second-degree
polynomial kernel of type �
 � � � ��� we get:
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where �� is the number of selected features3. The estimated
bound on the expected error is shown in Fig. 2. We had no
training error for more than 22 selected features. The esti-
mated bound on the expected error shows a plateau between
30 to 60 features, then it increases steadily.

The bound in Eq. (8) is considered to be a loose bound
on the expected error. To check if the bound is of practi-
cal use for selecting the number of features we performed
tests on the CMU test set. In Fig. 3 we compare the ROC
curves obtained for different numbers of selected features.
The results show that using more than 60 features does not
improve the performance of the system. This observation
coincides with the run of the curve in Fig. 2. However, the
error on the test set does not change significantly for more
than 70 features although the estimated bound on the ex-
pected error shown in Fig. 2 increases. Probably because
our bound gets looser with increasing number of features
through the approximation of � by the dimensionality of
the feature space.

4 Feature Reduction in the Feature Space

In the previous Section we described how to reduce the
number of features in the input space. Now we consider the

bound by
�
��.

3As we used a second-degree polynomial SVM the dimension of the
feature space � � ����� � ����.

Figure 3. ROC curves for different number of
PCA gray features.

problem of reducing the number of features in the feature
space. We use a new method based on the contribution of
the features from the feature space to the decision function
���� of the SVM.
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with � � ���� ���� ���. For a second-degree polyno-
mial kernel with ������ � �
 � � � ���, the feature
space ��� with dimension � � ������

� is given by �� �
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The contribution of a feature ��� to the decision function in
Eq. (10) depends on�� . A straightforward way to order the
features is by ranking 	��	. Alternatively, we weighted �
by the support vectors to account for different distributions
of the features in the training data. The features were
ordered by ranking 	��

�
� ���

�

���	, where ����� denotes
the �-th component of support vector � in feature space
���. For both methods we first trained an SVM with a
second-degree polynomial kernel on �	 PCA gray features
of the input space which corresponds to 
�
 features in
���. We then calculated

���� �
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for all � Support Vectors, where ����� is the decision func-
tion using the � first features according to their ranking.
Note that in contrast to the previously described selection
of features in the input space this method does not require
the retraining of SVMs for different feature sets. The results
in Fig. 4 show that ranking by the weighted components of
� lead to a faster convergence of ���� from Eq. (11) to-
wards 	. Fig. 5 shows the ROC curves for �		 and 
			



Figure 4. Classifying support vectors with
a reduced number of features. The �-axis
shows the number of features, the �-axis is
the mean absolute difference between the
output of the SVM using all features and the
same SVM using the � first features only. The
features were ranked according to the com-
ponents and the weighted components of the
normal vector of the separating hyperplane.

features. As a reference we added the ROC curve for a
second-degree SVM trained on the original �� gray fea-
tures. This corresponds to ��	�����	�

� � �	� ��� compo-
nents in the feature space. By combining both methods of
feature reduction we could reduce the dimensionality by a
factor of about �	 without loss in performance.

5 Hierarchy of classifiers

5.1 System Overview

In most object detection problems the majority of ana-
lyzed image patches belongs to the background class. Only
a small percentage of these patches look similar to objects
and require a highly accurate classifier to avoid false clas-
sifications. For this reason we developed a 3-level hierar-
chy of classifiers where the computational complexity of
the classifiers increases with each level. By propagating
only those patterns that were classified as faces, we quickly
decrease the amount of data when going up the hierarchy.
The bottom level of our hierarchy consisted of a linear
SVM that was trained on 9�9 face images. On the sec-
ond level we increased the image resolution by a factor of
two (19�19 face patterns) but kept the linear kernel. On
the third level we finally used our best classifier, a non-
linear SVM with a second-degree polynomial kernel that
was trained on 19�19 images. This classifier is highly sen-
sitive to translation. If a face is not centered in the classi-

Figure 5. ROC curves for different dimension
of the feature space.

fication window it is likely to be classified as a non-face.
In order not to miss any faces we search for faces in a small
neighborhood around each detection location that was prop-
agated from the second level. This means that we analyze
16 patterns on level three for each pattern that was classified
as a face on level two. Fig. 9 gives an impression of the
performance of the three individual classifiers; shown are
the detection results for images from the CMU test set 1.

5.2 Experiments

All three classifiers of our hierarchical system were
trained on the same training set of 2,429 faces and 4,548
randomly selected non-face patterns. To train the low-
resolution classifier in the first layer we downscaled the
images from 19�19 to 9�9 pixels. The classifiers in the
first two layers were trained on the gray value features de-
scribed in Section 2.3. The third classifier was trained on
PCA gray features which were determined by the feature
selection techniques described in Sections 3 and 4 (1,000
features in the feature space determined from 60 PCA gray
features of the input space). The ROC curves of the indi-
vidual classifiers are shown in Fig. 6 for CMU test set 1. In
Fig. 8 we show the data flow through the hierarchy for the
CMU test set 1. The first classifier removes more than 90%
of the background. The final classifier is most selective, it
classifies more than 99% of its input patterns as non-faces.
In Fig. 7 we compare the ROC curve of the 3-level system
with the ROC curve of the original single SVM classifier
with second-degree polynomial kernel. The performances
are similar. The average computing time for a 320�240
image is shown in Table 1. We achieved a speed-up by a
factor of 170 compared to the original system.



Figure 6. ROC curves for the three classifiers
of the hierarchical system for the CMU test
set 1.

6 Conclusion and Future Work

In this paper we presented speed-up methods for object
detection systems based on feature reduction and hierarchi-
cal classification. The feature reduction was done by rank-
ing and then selecting PCA gray features according to a
classification criterion that was derived from learning the-
ory. Applied to a face detection system we could remove
��� of the original features without loss in classification
performance. To quickly remove large background parts
of an image we arranged three classifiers with increasing
computational complexity in a hierarchical structure. Ex-
periments with a face detection system show that the com-
bination of feature selection and hierarchical classification
speeds-up the system by a factor of 170 while maintaining
the classification accuracy. In future work we will run ex-
periments on larger training sets, apply feature reduction to
all levels of the hierarchical classifier, and explore ways of
finding the optimal number of levels. We will also perform
experiments with hierarchical training where each classifier
is trained on the outputs of the classifier of the previous
level.
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Figure 8. Data flow for the 3-level hierarchy
of classifiers determined on the CMU test
set 1.

System Typical Speed-up
detection time factor

Single ��� degree 271 s –
polynomial SVM
Single ��� degree 63.8 s 4.25
polynomial SVM
+ Feature reduction
3-Level hierarchy 1.6 s 170
+ Feature reduction

Table 1. Computing time for a 320�240 im-
age processed on a dual Pentium III with
733 MHz. The original image was rescaled
in 5 steps to detect faces at resolutions be-
tween 26�26 and 60�60 pixels.

Figure 9. Detections at each level of the hierarchy.


